
Targeting Change:
How to Test Less & Manage the Risk

Twin Cities Quality Assurance Association

February 8, 2018

Andrey Madan – Lead Solution Architect

Agenda

•Testing Challenge in the Agile world

•Testing Pyramid

•Managing Risk of Change

•Continuous Testing Maturity Model

•Discussion and Q & A

THE MOST INNOVATIVE AND COMPLEX TIME
IN SOFTWARE DEVELOPMENT HISTORY

Agile adoption

50%
Time-to-Market

is top business priority

92%
Lost Revenue

for system downtime

$26.5B
Software Quality

is top business priority

#1

2011 2012 2015

of apps deployed
via cloud

65%
devices on the

Internet of Things

26B

Balancing Quality and Speed

Defects leaking into production

High cost of quality

Testing slowing down agility

Top challenges faced by software development organizations

• Waiting to test until everything is ready

• Lack of quality practices early in the SDLC

• Silo-ed Dev / QA … “QA is a bottleneck”

• Incomplete test coverage

• Late-cycle defect detection

• Last minute changes or fixes

• Performance and security testing “just
before release”

$
$$$$

$$$$$$$$$$

$$$$$$$$$$
$$$$$$$$$$
$$$$$$$$$$
$$$$$$$$$$

$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$

‘Shift-left’ defect detection and remediation

Reduce cost and increase agility

Percentage
of defects

85%

Coding Unit Test Functional
Test

System
Test

Release

% Defects introduced

Cost to repair defect

% Defects found

Agile = “I don’t have time to test EVERYTHING”

Release

2-3 weeks

How am I going
to test it all in

time?

The key to unlocking the benefits of Agile

Continuous execution of ‘all’ tests during each stage of the SDLC

The Approach

• Make It Work – Setup Your Testing Ecosystem (harness, tools, frameworks)

• Make It Right – Create a solid Testing Pyramid

• Make It Fast – Focus on “Testing the Change”

Building a solid Testing Pyramid

Quick to define, Time consuming to
execute, complex test environment,

hard to automate

Quick to execute, Simple test
environment, easy to automate but

hard to create

Building a solid Testing Pyramid

Minimize brittle UI
driven tests, focus on
highly automated API

centric testing

Shift-left testing with
Service Virtualization
and integrate into the

CI pipeline

Establish a solid
foundation of early

stage Unit Tests

Building a solid Testing Pyramid

Minimize brittle UI
driven tests, focus on
highly automated API

centric testing

Shift-left API testing
and integrate into the

CI pipeline

Establish a solid
foundation of early

stage Unit Tests

Building a solid Testing Pyramid

Minimize brittle UI
driven tests, focus on
highly automated API

centric testing

Shift-left API testing
and integrate into the

CI pipeline

Establish a solid
foundation of early

stage Unit Tests

Building a solid Testing Pyramid

1. Blend testing techniques to maximize ROI
• R = Quality/Risk Mitigation

• I = Developer/Tester’s time to create and execute

2. Build a foundation of stable and
continuous automated tests.

3. Leverage advance analytics to
focus on change and accelerate
testing schedules

… but there’s still a problem

De

Focused on enhancements and new capabilities Full Regression Cycle

“Why is the release delayed AGAIN?”

Critical
Defects

The Approach

• Make It Work – Setup Your Testing Ecosystem (harness, tools, frameworks)

• Make It Right – Create a solid Testing Pyramid

• Make It Fast – Focus on “Testing the Change”

What is Change Based Testing?

1. Understand what each test covers

2. Understand which code changed

3. Focus on the tests that validate the changes

http://52.24.204.104:8080/

What is Code Coverage?

• Some Types:

• Line

• Function

• Statement

• Branch

• Condition

• Path

• Modified Condition / Decision Coverage (MCDC)

9-11
Mar
2015

Benefit of code coverage

• It helps in finding areas of a program not exercised by a set of test
cases

• It highlights the need for additional test cases to increase coverage

• It helps in determining a quantitative measure of code coverage,
which indirectly measure the quality of the application or product.

Disadvantage of code coverage

•There is danger in using a coverage measure. 100% coverage does
not mean 100% tested

• It measures coverage of what has been written in the code; it
cannot say anything about the code that has not been written

… but did you fully test the change?

•The existing tests executed … do you need create more?

• “My coverage is stable”

• “Code coverage went up to 80% – so everything is good!”

•… but what is the coverage on the modified code?

• Many people changing many files, how do you know if you actually tested
the change?

• Did you test the right “80%”?

•With large code bases, and limited resources organizations don’t
have time to create tests for “everything” …

… focus on the Modified Coverage

•Target 100% ‘modified coverage’ vs 80% of overall coverage

Continuous Testing Maturity Model

Ad-hock / Reactive

•Focus: Overcoming short-term
testing ‘point problems’
•Limited automated execution of

test scenarios

•Reacting to ‘immediate’ problem
with the test environment

•Focused on eliminating specific
unstable/unavailable environment
constraints

•Short time-life/disposable artifacts

•Static/fix responses and example
payloads

Automated / Managed

•Focus: Embedding automation
into CI pipelines
•Automated tests decoupled from

constrained test environments

•Reusable virtual assets supporting
different functional and
performance scenarios

•Long-lasting and regularly
maintained artifacts

•Leveraging data for
parameterization of test scenarios
and virtual assets

Optimized / Proactive

• Focus: Continuous Testing to
enable Continuous Delivery

• Validating ‘what-if’
scenarios and ‘corner-case’

• Dynamic deploy-and-
destroy of test
environments (via
containers)

• Larger Portfolio of virtual
assets with different levels
of complexity; CRUD, data
learning

• Module design of test suites

• Reuse of API test scenarios
to enable shift-left
performance and security
testing

• Data modeling and
abstraction for expanded
test coverage

Identify Baseline

Start Sprint

Executed
Automated Tests

Close the re-test
gap

Reset Baseline

Next Sprint

Executed CBT
Analysis

Create Test Plan
from CBT Analysis

Submit results from
re-test efforts

The Approach

✓Make It Work – Setup Your Testing Ecosystem (harness, tools, frameworks)

✓Make It Right – Create a solid Testing Pyramid

✓Make It Fast – Focus on “Testing the Change”

Time for a Quick Demo

Summary

✓Focus on test strategy, not tools: Build a solid Testing Pyramid

✓Prioritize creation of new tests on the changed lines of code not covered by
existing regressions

✓Leverage intelligent analytics, including Change-Based Testing, Modified
Code Coverage, and Risky Code Change, to prioritize your agile testing
activities

Thank you

Contact information:

andrey.madan@parasoft.com

